首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7503篇
  免费   638篇
  国内免费   770篇
化学   7115篇
晶体学   30篇
力学   146篇
综合类   14篇
数学   75篇
物理学   1531篇
  2023年   87篇
  2022年   110篇
  2021年   123篇
  2020年   147篇
  2019年   136篇
  2018年   103篇
  2017年   154篇
  2016年   221篇
  2015年   308篇
  2014年   240篇
  2013年   360篇
  2012年   402篇
  2011年   503篇
  2010年   452篇
  2009年   504篇
  2008年   403篇
  2007年   491篇
  2006年   357篇
  2005年   342篇
  2004年   315篇
  2003年   277篇
  2002年   180篇
  2001年   134篇
  2000年   158篇
  1999年   109篇
  1998年   123篇
  1997年   122篇
  1996年   136篇
  1995年   118篇
  1994年   119篇
  1993年   116篇
  1992年   81篇
  1991年   86篇
  1990年   68篇
  1989年   78篇
  1988年   112篇
  1987年   97篇
  1986年   100篇
  1985年   127篇
  1984年   116篇
  1983年   74篇
  1982年   116篇
  1981年   116篇
  1980年   108篇
  1979年   119篇
  1978年   73篇
  1977年   16篇
  1976年   28篇
  1973年   19篇
  1972年   16篇
排序方式: 共有8911条查询结果,搜索用时 15 毫秒
61.
张晗  丁家旺  秦伟 《化学进展》2021,33(10):1756-1765
多肽具有分子量小、易于合成、生物兼容性好、稳定性高及序列灵活多样等优点。因此,多肽作为新型生物识别元件,已被广泛应用于生物传感器的构建。电化学分析灵敏度高、准确度好、设备简单、检测范围广且易于操作。本文介绍了基于多肽识别的电化学生物传感器技术,包括多肽的修饰与固定化、多肽与待测物的识别及检测原理;综述了近五年多肽电化学生物传感器对重金属离子、小分子、蛋白质、细菌和病毒的检测;展望了肽基电化学生物传感器的发展趋势。  相似文献   
62.
《印度化学会志》2021,98(2):100029
Alkaline phosphatase (ALP) is an important biomarker in clinical diagnostics, and the abnormal level of ALP enzyme in serum is closely related to various diseases such as bone metastases, bone or liver cancer, and extrahepatic biliary obstruction. Recognizing the location and expression level of ALP in live cells has a substantial importance in early-stage cancer diagnosis, as well as an important parameter for studying the recovery of the patients after liver transplantation. With the advent of the newer and advanced fluorescence imaging techniques, small-molecule fluorescent probes have become a very powerful tool for mapping the subtle changes in the enzyme expression level in living cells and tissues in real-time. In this account, we provide an overview of recent advances in small-molecule ALP fluorescent probes, mainly during the last few years, including the design strategies and applications for biological applications.  相似文献   
63.
In recent years, indole derivatives have acquired conspicuous significance due to their wide spectrum of biological activities—antibacterial, antiviral, and anticonvulsant. This compound is derived from naturally grown plants. Therefore, synthesis of a novel “3-(Naphthalen-1-ylimino)indolin-2-one” compound (2) and its analysis using UPLC systems along with antimicrobial assessment was the aim of the current study. Isatin was used as a parent drug for synthesizing compound (2). Liquid Chromatographic analysis was performed using a C18 BEH column (1.7 μm 2.1 × 50 mm) by UPLC systems. Degradation studies were carried out to see whether acid, base, thermal, and oxidizing agents had any impact on the synthesized molecule in stress conditions (100 °C). A lipid-based self-nanoemulsifying formulation was developed and selectivity, specificity, recovery, accuracy, and precision were measured as part of the UPLC system’s validation process. Antimicrobial studies were conducted using gram-positive and gram-negative bacteria. The standard samples were run with a concentration range of 5.0–100.0 μg/mL using the isocratic mobile phase comprising of methanol/water (70/30 %v/v) at 234 nm; good linearity (R2 = 0.9998) was found. The lower limits of detection (LOD) and quantitation (LOQ) of the method were found to be 0.81 μg/mL and 2.5 μg/mL, respectively. The coefficients of variation were found to be less than 2%. The antimicrobial study suggests that compound (2) has a substantial growth effect against gram-negative bacteria. It was successfully synthesized and applied to measure the concentrations in lipid-based dosage form, along with potent antimicrobial activities.  相似文献   
64.
钙钛矿太阳能电池由于具有高的光电转换效率,简单的溶液加工工艺,较低的成本等优势因而拥有广阔的应用前景。有机小分子空穴传输层材料在钙钛矿太阳能电池中扮演着极其重要的角色。在本工作中,我们设计和合成了基于吡嗪为分子中心核,三苯胺为分枝的X型空穴传输层材料PT-TPA。与Si-OMeTPA对比,吡嗪的引入不仅不会影响其结晶性,并且能够改善其电荷转移特性和分子中心共平面性,从而显著提升了PT-TPA的空穴迁移率。在非掺杂的情况之下,基于PT-TPA空穴传输层的p-i-n型钙钛矿太阳能电池展现出17.52%的光电转换效率,与相同条件下基于Si-OMeTPA空穴传输层的器件相比,效率提高了近15%。  相似文献   
65.
Metal organic frameworks(MOFs) are a kind of promising materials in many applications,while the fast and controllable synthesis of MOFs is still challenging.Here,taking HKUST-1 as illustration,a microplasma electrochemistry(MIPEC) strategy was developed to accelerate the synthesis process of MOFs with micro-plasma acting as cathode.Treating the HKUST-1 precursor solution with micro-plasma cathode could not only transfer the electrons into the solution leading to the deprotonation effect,but also generate radical species to trigger and accelerate the nucleation and growth of MOFs at the plasmaliquid interface.Thus,uniform and nanosize MOFs could be prepared within minutes.The obtained MOFs show similar excellent uranium adsorption properties compared with those obtained by other method,with a highly adsorption capability of uranium with 550 mg/g in minutes.The novel MIPEC strategy developed in this work provides an alternative for controllable synthesis of MOFs,and especially has potential application in accelerating traditional organic synthesis.  相似文献   
66.
The reaction pathways of 1-propanethiol, 1-propanol, and propylamine molecules, containing a propyl moiety, on a Ge(100) surface were investigated using high-resolution photoemission spectroscopy (HRPES) experiments and density functional theory (DFT) calculations. Upon analysis of the HRPES data, the adsorption of 1-propanethiol and 1-propanol was found to occur through a dissociation reaction, whereas that of propylamine took place via N dative bonding at room temperature. On the basis of our DFT results, adsorption geometries and transition states for each of these molecules on the Ge(100) surface were confirmed. Systematic studies of S-, O-, and N-containing molecules, composed of an identical propyl moiety, on the Ge(100) surface provide insight into the adsorption mechanism of aliphatic molecules containing alkyl chains on the Ge(100) surface.  相似文献   
67.
We have theoretically investigated the magnetic properties of heteroallene (>C=C=X−) and heterocumulene (>C=C=C=X−) based tert-butyl nitroxide diradicals (X is P/As). Calculation of magnetic exchange coupling constant (J) shows ferromagnetic interaction in heteroallene based diradicals. Whereas, in heterocumulene based diradicals, tuning of J value from antiferro- to ferro-magnetic state is observed from Z- to E- isomer. Delocalization of spin density from radical site to the coupler (in planar arrangement) is observed in spin distribution analysis which is also advocated by molecular orbital analysis. The typical feature of tert-butyl nitroxide radical creates spin delocalization along with spin polarization within the coupler. The J values of all the diradicals strongly depend on the dihedral angle between radical center and coupler. Magneto-structural correlation shows that the change in dihedral angle tunes the magnetic property for both the Z- and E- isomers of heterocumulenes depending on the spin accumulation on two nearby magnetic centers. The extent of spin delocalization and conformation of spin centers on the molecular axis are important for the different J values observed in our designed systems.  相似文献   
68.
With impressive progress in carbon capture and renewable energy, carbon dioxide (CO2) conversion into useful chemicals has become a potential tool against climate change. Electrochemical CO2 conversion into C2 products (ethylene and ethanol) is an especially economically promising approach and an active research area. Nonetheless, catalyst layer design for CO2 conversion is challenging because of the complex CO2-to-C2 reaction pathways. In this review, we highlight key ideas in catalyst layer design for CO2 conversion to C2 in the past few years. We identify three fundamental principles to control catalyst selectivity—local CO2 and CO concentration, local pH, and intermediate–catalyst interaction. To achieve these goals, we introduce design strategies for both catalytic materials and overall catalyst layer morphology.  相似文献   
69.
Treatment of polluted soil is one of the priorities in the search of a more sustainable planet. Electrochemically assisted soil remediation has been considered a good option for removing organic contaminants contained in soil, including the removal of volatile organic compounds, associated with gaseous streams produced during the treatment. Also, recently, electrochemical gas treatment technologies have been appointed as promising for the treatment of volatile organic compounds. In this work, we review the current opinion about the most recent studies in both areas. The first section focuses on the production of gaseous compounds during soil remediation by conventional and electrochemical systems. The second section describes the recent progress in the integration of adsorption and absorption with electrochemical processes. Finally, we discuss the holistic application of assisted electrochemical technologies in soil remediation, considering also emerging processes recently published in the literature.  相似文献   
70.
Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号